色综久久_日本一区二区三区四区_久久国产视频精品_成人在线网_欧美日韩在线一区_91干b

2015考研數學:16種求極限的方法及解題思路

沖刺階段學數學=浪費時間?!開什么玩笑!數學不過各位看官覺得自己的專業能上嗎?而沖刺時刻不學數學丟了題感,那結果,你懂得!沖刺學數學,方法和思路很重要!

   解決極限的方法如下:(我能列出來的全部列出來了!你還能有補充么?)

  1、等價無窮小的轉化,(只能在乘除時候使用,但是不是說一定在加減時候不能用,前提是必須證明拆分后極限依然存在,e的X次方-1或者(1+x)的a次方-1等價于Ax等等。全部熟記(x趨近無窮的時候還原成無窮小)。

  2、洛必達法則(大題目有時候會有暗示要你使用這個方法)。首先他的使用有嚴格的使用前提!必須是X趨近而不是N趨近!(所以面對數列極限時候先要轉化成求x趨近情況下的極限,當然n趨近是x趨近的一種情況而已,是必要條件(還有一點數列極限的n當然是趨近于正無窮的,不可能是負無窮!)必須是函數的導數要存在!(假如告訴你g(x),沒告訴你是否可導,直接用,無疑于找死!!)必須是0比0無窮大比無窮大!當然還要注意分母不能為0。洛必達法則分為3種情況:0比0無窮比無窮時候直接用;0乘以無窮,無窮減去無窮(應為無窮大于無窮小成倒數的關系)所以無窮大都寫成了無窮小的倒數形式了。通項之后這樣就能變成第一種的形式了;0的0次方,1的無窮次方,無窮的0次方。對于(指數冪數)方程方法主要是取指數還取對數的方法,這樣就能把冪上的函數移下來了,就是寫成0與無窮的形式了,(這就是為什么只有3種形式的原因,LNx兩端都趨近于無窮時候他的冪移下來趨近于0,當他的冪移下來趨近于無窮的時候,LNX趨近于0)。

  3、泰勒公式(含有e的x次方的時候,尤其是含有正余弦的加減的時候要特變注意!)E的x展開sina,展開cosa,展開ln1+x,對題目簡化有很好幫助。

  4、面對無窮大比上無窮大形式的解決辦法,取大頭原則最大項除分子分母!!!看上去復雜,處理很簡單!

  5、無窮小于有界函數的處理辦法,面對復雜函數時候,尤其是正余弦的復雜函數與其他函數相乘的時候,一定要注意這個方法。面對非常復雜的函數,可能只需要知道它的范圍結果就出來了!

  6、夾逼定理(主要對付的是數列極限!)這個主要是看見極限中的函數是方程相除的形式,放縮和擴大

  7、等比等差數列公式應用(對付數列極限)(q絕對值符號要小于1)。

  8、各項的拆分相加(來消掉中間的大多數)(對付的還是數列極限)可以使用待定系數法來拆分化簡函數。

  9、求左右極限的方式(對付數列極限)例如知道Xn與Xn+1的關系,已知Xn的極限存在的情況下,xn的極限與xn+1的極限時一樣的,因為極限去掉有限項目極限值不變化。

  10、兩個重要極限的應用。這兩個很重要!對第一個而言是X趨近0時候的sinx與x比值。第2個就如果x趨近無窮大,無窮小都有對有對應的形式(第2個實際上是用于函數是1的無窮的形式)(當底數是1的時候要特別注意可能是用地兩個重要極限)

  11、還有個方法,非常方便的方法,就是當趨近于無窮大時候,不同函數趨近于無窮的速度是不一樣的!x的x次方快于x!快于指數函數,快于冪數函數,快于對數函數(畫圖也能看出速率的快慢)!!當x趨近無窮的時候,他們的比值的極限一眼就能看出來了。

  12、換元法是一種技巧,不會對單一道題目而言就只需要換元,而是換元會夾雜其中。

  13、假如要算的話四則運算法則也算一種方法,當然也是夾雜其中的。

  14、還有對付數列極限的一種方法,就是當你面對題目實在是沒有辦法,走投無路的時候可以考慮轉化為定積分。一般是從0到1的形式。

  15、單調有界的性質,對付遞推數列時候使用證明單調性!

  16、直接使用求導數的定義來求極限,(一般都是x趨近于0時候,在分子上f(x加減某個值)加減f(x)的形式,看見了要特別注意)(當題目中告訴你F(0)=0時候f(0)導數=0的時候,就是暗示你一定要用導數定義!

  函數是表皮,函數的性質也體現在積分微分中。例如他的奇偶性質他的周期性。還有復合函數的性質:

  1、奇偶性,奇函數關于原點對稱偶函數關于軸對稱偶函數左右2邊的圖形一樣(奇函數相加為0);

  2、周期性也可用在導數中在定積分中也有應用定積分中的函數是周期函數積分的周期和他的一致;

  3、復合函數之間是自變量與應變量互換的關系;

  4、還有個單調性。(再求0點的時候可能用到這個性質!(可以導的函數的單調性和他的導數正負相關):o再就是總結一下間斷點的問題(應為一般函數都是連續的所以間斷點是對于間斷函數而言的)間斷點分為第一類和第二類剪斷點。第一類是左右極限都存在的(左右極限存在但是不等跳躍的的間斷點或者左右極限存在相等但是不等于函數在這點的值可取的間斷點;第二類間斷點是震蕩間斷點或者是無窮極端點(這也說明極限即使不存在也有可能是有界的)。

  下面總結一下,求極限的一般題型:

  1、求分段函數的極限,當函數含有絕對值符號時,就很有可能是有分情況討論的了!當X趨近無窮時候存在e的x次方的時候,就要分情況討論應為E的x次方的函數正負無窮的結果是不一樣的!

  2、極限中含有變上下限的積分如何解決嘞?說白了,就是說函數中現在含有積分符號,這么個符號在極限中太麻煩了你要想辦法把它搞掉!

  解決辦法:

  1、求導,邊上下限積分求導,當然就能得到結果了,這不是很容易么?但是!有2個問題要注意!問題1:積分函數能否求導?題目沒說積分可以導的話,直接求導的話是錯誤的!!!!問題2:被積分函數中既含有t又含有x的情況下如何解決?

  解決1的方法:就是方法2微分中值定理!微分中值定理是函數與積分的聯系!更重要的是他能去掉積分符號!解決2的方法:當x與t的函數是相互乘的關系的話,把x看做常數提出來,再求導數!!當x與t是除的關系或者是加減的關系,就要換元了!(換元的時候積分上下限也要變化!)

  3、求的是數列極限的問題時候:夾逼或者分項求和定積分都不可以的時候,就考慮x趨近的時候函數值,數列極限也滿足這個極限的,當所求的極限是遞推數列的時候:首先:判斷數列極限存在極限的方法是否用的單調有界的定理。判斷單調性不能用導數定義!!數列是離散的,只能用前后項的比較(前后項相除相減),數列極限是否有界可以使用歸納法最后對xn與xn+1兩邊同時求極限,就能出結果了!

  4、涉及到極限已經出來了讓你求未知數和位置函數的問題。

  解決辦法:主要還是運用等價無窮小或者是同階無窮小。因為例如:當x趨近0時候f(x)比x=3的函數,分子必須是無窮小,否則極限為無窮,還有洛必達法則的應用,主要是因為當未知數有幾個時候,使用洛必達法則,可以消掉某些未知數,求其他的未知數。

  5、極限數列涉及到的證明題,只知道是要構造新的函數,但是不太會!!!

  最后總結一下間斷點的題型:

  首先,遇見間斷點的問題、連續性的問題、復合函數的問題,在某個點是否可導的問題。主要解決辦法一個是畫圖,你能畫出反例來當然不可以了,你實在畫不出反例,就有可能是對的,尤其是那些考概念的題目,難度不小,對我而言證明很難的!我就畫圖!!我要能畫出來當然是對的,在這里就要很好的理解一階導的性質2階導的性質,函數圖形的凹凸性,函數單調性函數的奇偶性在圖形中的反應!(在這里尤其要注意分段函數!(例如分段函數導數存在還相等但是卻不連續這個性質就比較特殊!!應為一般的函數都是連續的);

  方法2就是舉出反例!(在這里也是尤其要注意分段函數!!)例如一個函數是個離散函數,還有個也是離散函數他們的復合函數是否一定是離散的嘞?答案是NO,舉個反例就可以了;

  方法3上面的都不行那就只好用定義了,主要是寫出公式,連續性的公式,求在某一點的導數的公式

  最后了,總結一下函數在某一點是否可導的問題

  1、首先函數連續不一定可導,分段函數x絕對值函數在(0,0)不可導,我的理解就是:不可導=在這點上圖形不光滑。可導一定連續,因為他有個前提,在點的鄰域內有定義,假如沒有這個前提,分段函數左右的導數也能相等;

  主要考點1:函數在某一點可導,他的絕對值函數在這點是否可導?解決辦法:記住函數絕對值的導數等于f(x)除以(絕對值(f(x)))再乘以F(x)的導數。所以判斷絕對值函數不可導點,首先判斷函數等于0的點,找出這些點之后,這個導數并不是百分百不存在,原因很簡單分母是無窮小,假如分子式無窮小的話,絕對值函數的導數依然存在啊,所以還要找出f(a)導數的值,不為0的時候,絕對值函數在這點的導數是無窮,所以絕對值函數在這些點上是不可導的啊。

  考點2:處處可導的函數與在,某一些點不可導但是連續的函數相互乘的函數,這個函數的不可導點的判斷,直接使用導數的定義就能證明,我的理解是f(x)連續的話但是不可導,左右導數存在但是不等,左右導數實際上就是X趨近a的2個極限,f(x)乘以G(x)的函數在x趨近a的時候,f(x)在這點上的這2個極限乘以g(a),當g(a)等于0的時候,左右極限乘以0當然相等了,乘積的導數=f(a)導數乘以G(a)+G(a)導數乘以F(a),應為f(a)導數乘以G(a)=0,前面推出來了,所以乘積函數在這點上就可導了。導數為G(a)導數乘以F(a)。

以上就是“2015考研數學:16種求極限的方法及解題思路”全部內容,更多相關信息,請持續關注研線網

X

掃碼添加獲取各院校復試名單及錄取名單

【版權與免責聲明】本站所提供的內容除非來源注明研線網,否則內容均為網絡轉載及整理,并不代表本站贊同其觀點和對其真實性負責。文章由本站編輯整理發出,僅供個人交流學習使用。如本站稿件涉及版權等問題,請聯系本站管理員予以更改或刪除。

責任編輯:superadmin
色综久久_日本一区二区三区四区_久久国产视频精品_成人在线网_欧美日韩在线一区_91干b
<cite id="gouee"></cite>
<code id="gouee"><acronym id="gouee"></acronym></code>
  • <li id="gouee"></li>
    <strike id="gouee"></strike>
  • <li id="gouee"><source id="gouee"></source></li>
  • <rt id="gouee"></rt>
    美女久久网站| 亚洲激情一区二区| 中文字幕中文字幕一区三区| 四虎影视永久免费在线观看一区二区三区| 欧美主播一区二区三区美女 久久精品人| 欧美日韩在线一区二区三区| 亚洲三级色网| 午夜久久99| 国产成人免费观看| 欧美激情第一页在线观看| 亚洲一区二区在| 久久国产精品久久精品国产| 国产一区二区三区奇米久涩| 日本一区视频在线| 久久婷婷av| 国产一区二区三区四区三区四| 国产精品白丝jk白祙| 97超碰人人看人人| 亚洲高清乱码| 色中色综合成人| 国产精品免费看| 亚洲尤物在线| 欧美久久一区| 成人高清在线观看| 中文字幕99| 精品无码久久久久国产| 国产欧美日韩在线播放| 中文字幕免费在线不卡| yy111111少妇影院日韩夜片| 亚洲精品一区二| 一区二区三区视频| 麻豆亚洲一区| 99精品在线直播| 国产一区二区三区免费不卡| 欧美精品国产一区二区| 亚洲国产另类久久久精品极度| 91国产在线免费观看| 亚洲福利一区| 欧美日韩一卡| 亚洲欧美一级二级三级| 久久久久久久欧美精品| 国产欧美日韩一区二区三区在线| 欧美欧美天天天天操| 永久免费精品视频网站| 少妇免费毛片久久久久久久久 | 久久久精品午夜少妇| 一区二区三区欧美在线| 韩国av一区| 欧美日韩一区在线观看视频| 欧美尤物一区| 中文字幕在线中文字幕日亚韩一区| 欧美午夜精品理论片a级大开眼界 欧美午夜精品久久久久免费视 | 久久久久综合| 久久精品国产清高在天天线| 性久久久久久| 久久免费国产| 痴汉一区二区三区| 精品一区二区三区免费毛片| 狠狠色伊人亚洲综合网站色| 精品一区二区三区免费毛片| 免费欧美在线| 5g国产欧美日韩视频| 香蕉久久夜色| 91免费看蜜桃| 久久99精品久久久久久水蜜桃| 国产欧美一区二区三区另类精品| 国产高清在线一区| 久久99精品久久久久久秒播放器 | 国产区一区二区三区| 久久久久久一区| 国产免费一区二区| 乱一区二区三区在线播放| 神马影院我不卡午夜| 一区二区三区不卡在线| 亚洲精品视频一二三| 午夜精品视频| 在线一区欧美| 国产精品成人一区二区三区| 蜜桃网站成人| 亚洲国产精品毛片| 亚洲精品欧美| 久久性天堂网| 欧美午夜欧美| 欧美三区在线| 久久婷婷人人澡人人喊人人爽| 粉嫩av免费一区二区三区| 亚洲国产一区二区精品视频 | 久热国产精品视频一区二区三区| 宅男在线精品国产免费观看| 久久国产主播精品| 亚洲在线色站| 114国产精品久久免费观看| 亚洲精品视频一区二区三区| 久久av二区| 亚洲欧美日本国产有色| 西西裸体人体做爰大胆久久久| 欧美日韩国产高清视频| 国产一区二区高清| 亚洲一二三区在线| 久久亚洲一区| 国语自产精品视频在线看8查询8| 国产精品视频免费一区二区三区| 欧美精品首页| 国产一区国产精品| 日韩视频精品| 午夜精品一区二区三区在线观看| 亚洲一区欧美激情| 欧美一区视频| 久久人人九九| 久久先锋资源| 在线播放亚洲| 偷拍视频一区二区| 国产一区不卡在线观看| 亚洲黄色成人| 亚洲国产精品一区二区第一页 | 亚洲一卡二卡三卡四卡无卡网站在线看| 亚洲综合激情| 午夜久久美女| 日韩一区二区电影在线观看| 久久伊人一区二区| 91久久极品少妇xxxxⅹ软件| 婷婷精品国产一区二区三区日韩| 国产精品免费区二区三区观看 | 亚洲一区影院| 欧美三日本三级少妇三99| 久久不射2019中文字幕| 蜜桃久久影院| aa成人免费视频| 在线免费观看欧美| 欧美精品三级| 亚洲日本无吗高清不卡| 欧美日韩在线观看一区| 国产精品亚洲一区| 久久中文精品| 久久九九精品| 校园春色综合网| 国产精品免费一区二区三区在线观看| 欧美一区综合| 欧美在线播放一区二区| 亚洲高清在线观看一区| 日本不卡久久| 鲁丝一区鲁丝二区鲁丝三区| 国产欧美一区二区视频| 国产精品国产三级欧美二区| 久久国产88| 久久综合九色综合欧美狠狠| 亚洲伊人网站| 亚洲尤物影院| 久久久久久久久久码影片| 先锋影音一区二区三区| 免费久久99精品国产自| 国产欧美日韩亚洲| 99国产精品99久久久久久粉嫩| 亚洲二区三区四区| 99在线|亚洲一区二区| 伊人久久大香线蕉av超碰演员| 国产精品www.| 激情久久婷婷| 亚洲国产裸拍裸体视频在线观看乱了中文 | 偷拍视频一区二区| 日韩欧美在线电影| 亚洲一区免费看| 欧美日本亚洲韩国国产| 伊人成年综合电影网| av成人免费观看| 国产一区二区高清| 99九九电视剧免费观看| 精品无码久久久久久久动漫| 日本一区免费看| 一本一道久久久a久久久精品91| 亚洲国产高清国产精品| 欧美日韩在线播放一区二区| 伊人久久亚洲热| 一区二区三区欧美成人| 老鸭窝亚洲一区二区三区| 国产伦精品一区二区三区四区免费| 免费99视频| 中文字幕色一区二区| 亚洲激情影院| 欧美亚洲视频| 国产精品免费一区二区三区观看| 欧美日韩国产精品一区二区| 亚洲免费在线精品一区| 亚洲国产日韩在线| 91久久精品国产91久久性色tv| 激情欧美一区二区三区中文字幕| 日本日本精品二区免费| 国产精品初高中精品久久| 国产一区导航| 欧美久久在线| 国内一区二区三区在线视频| 久久精品女人天堂| 日本亚洲自拍| 99香蕉国产精品偷在线观看| 俄罗斯精品一区二区三区| 亚洲自拍偷拍二区| 香蕉成人久久| 亚洲国产精品日韩| 免费视频一区二区三区在线观看| 精品国产乱码久久久久软件|